Fusion of feature selection methods for pairwise scoring SVM
نویسندگان
چکیده
It has been recently discovered that stacking the pairwise comparison scores between an unknown patterns and a set of known patterns can result in feature vectors with nice discriminative properties for classification. However, such technique can be hampered by the curse of dimensionality because the vectors size is equal to the training set size. To overcome this problem, this paper investigates various filter and wrapper feature selection techniques for reducing the feature dimension of pairwise scoring matrices and argues that these two types of selection techniques are complementary to each other. A fusion technique is then proposed to combine the ranking criteria of filter and wrapper methods at algorithmic level. Evaluations on a subcellular localization benchmark demonstrate that feature sets selected by the fusion methods outperform those selected by the individual methods alone.
منابع مشابه
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملFusion of SFS-SVM feature selection methods using robust rank aggregation for optimal feature subset selection for mammogram classification
Feature selection and classification plays an important role in the design and development of a computer aided detection and diagnostics (CAD) tool for breast cancer detection from mammograms. In literature, the various feature selection methods exists such as filter based, wrapper based, and hybrid methods whose aim is to select the most relevant and minimum redundant features from the extract...
متن کاملSelection of Favorite Reusable Launch Vehicle Concepts by using the Method of Pairwise Comparison
The contribution of this paper to the space transportation system field is to select promising Reusable Launch Vehicle (RLV) concepts by using a formal evaluation procedure. The vehicle system is divided into design features. Every design feature can have alternative characteristics. All combinations of design features and characteristics are compared pairwise with each other. The innovation an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 71 شماره
صفحات -
تاریخ انتشار 2008